Welcome to Deji Ayorinde's Blog
Home of aluminium building constructions,Entertainment,Gists,Inspiration and Sorts!!!!!
Popular Posts
-
The inherent benefits of Aluminium Roofing Sheets include: beauty and aesthetics, light weight and strength (high-strength-to-weight rati...
-
In today’s world of socioeconomic and security realities, it is not out of place to think that governance, business and corporate organizat...
-
CHEMICAL DEFINITION Aluminium: a chemical element (symbol Al) with an atomic number of 13, an atomic weight of 26.98, and a single stab...
-
A parapet is a barrier which is an extension of the wall at the edge of a roof , terrace , balcony , walkway or other structure ...
-
Razor barbed wire fencing and razor wire concertina makes the majority of our products. Razor barbed wire fencing is usually made of ga...
-
For different variety of aluminum fabrication works ranging from,aluminum sliding windows and doors,casement windo...
-
Wide range of Stone Coated Metal Roofing Tiles is highly appreciated for thei...
-
Passages ways and balcony are the initial beauty of a building,therefore the introduction of aluminium balcony systembrings out such ...
-
20% of the world’s aluminium is used in the construction sector. A building is rarely constru...
Saturday, 26 January 2019
Thursday, 14 July 2016
PARAPET....SEASON 2
Where Roofs Meet Wall
Historically, so many problems have occurred with parapets that we have a name for it: “parapetitus.” They have a long history—which of course is not always clear—that allows me to embellish without threat of peer review reversal.1 Their major function today, aside from confusing architects, is to protect the edge of roof assemblies from wind uplift forces. Not so in the old days where they were useful in fire protection.
When wind blows against a building it produces vortices at the roof edges (Figure 1) that create huge pressure differences (Figure 2) at roof perimeters that can suck roofs off buildings. Parapets dramatically reduce these pressure differences at roof edges (Figure 3). Neat eh? All this from a University of Toronto guy, go Varsity Blues (Leutheusser, H.J., 1964(2)).
Figure 1: Roof Edge Wind Effects—When wind blows against a building, it produces vortices at the roof edges.
Figure 2: Pressure Differences—Notice the large pressures at roof perimeters. From Leutheusser(2) and the Department of Mechanical Engineering, University of Toronto, 1964. Some of us recall that 1964 was a good year. The Toronto Maple Leafs won the Stanley Cup. Tim Horton played defense on that team long before he got into the donut business.
Figure 3: Effect of Parapets on Pressure Differences—Parapets dramatically reduce these pressure differences at roof edges. This is from a beautiful bit of work from Leutheusser at my alma mater the University of Toronto. Of course, this happened in 1964, more than a decade before I got there. I am old, but not that old.
The easiest thing to get right about parapet construction is to keep rainwater from getting into the top of them. The principles are easy. Slope the top of them inward so they don’t stain the building façade. Make sure that there is a waterproof membrane under the coping. Always. Metal and stone copings leak at joints. And always have drip edges—front and back—so that they don’t stain the building façade. Did I mention the staining of the building façade? Check out Figure 4 and Photograph 1 to see it done right. If you want to get depressed, look at Photograph 2.
Figure 4: Parapet Water Management—Keep rainwater from getting into the top of them. Slope the top of them inward so they don’t stain the building façade. Make sure there is a waterproof membrane under the coping. And always have drip edges—front and back—so they don’t stain the building façade.
Photograph 1: Excellent Water Management—Notice the membrane under the coping. Notice the slope to the interior. And, notice the drip edges.
Are we done yet? Nope, not by a long shot. Now it gets weird, not the physics, but why so many buildings get the physics wrong. For the physics we go to another one of those legendary old guys who got it right and made it simple for the rest of us to understand—Max Baker. Check out Figure 5, adapted from his book “Roofs.” Connect the water control element/layer of the roof to the wall, the air control element/layer of the roof to the wall, the vapor control element/layer of the roof to the wall and finally the thermal control element/layer of the roof to the wall. Sound familiar? Coming from me it should by now.2 I call them the “Baker Principles.”
Figure 5: Parapet Physics—The “Baker Principles.” Adapted from the master, Max Baker.(1) Adapted how? I just updated the words, just the words, not the principles. Everyone relax. This is probably the most influential graphic in my building science education. When I first saw it, the lightbulb went off. Continuity of the control layers between roofs and walls is the whole enchilada.
This is what we typically get in the “real world” today (Figure 6). What a mess. No continuity of the four principle control layers:
- Water control layer: no membrane under the parapet flashing;
- Air control layer: no air control in either the roof assembly or the wall assembly;
- Vapor control layer: same goes for the vapor control layer; and
- Thermal control layer: thermal bridging everywhere.
Figure 6: Problem Parapet—This is what I see on a regular basis. Everything is wrong. Air leakage into and out of everything and everywhere. No membrane under the parapet flashing. No air control in either the roof assembly or the wall assembly. No vapor control layer and thermal bridging everywhere.
And to make matters worse, structurally we also tend to have some issues. Ah, but not in the way you think. Think about the thermal stress a roof membrane goes through (Figures 7 and 8). The key is to transfer these stresses to the roof deck. In the old days it was easy; just fully adhere the roof membrane with a lot of goop directly to the structural deck so that each square foot of roof membrane stress was directly transferred to the square foot of structural deck directly under the membrane. No problem. Until, wait for it, some lunatic person introduced thermal insulation. Now we had to transfer the stress of the membrane through sometimes multiple layers of insulation before it got to the structural deck (Figure 9). If you didn’t get it right, you concentrated the stresses at roof edges, and you could suck in a parapet (Figure 10) or tear or rip a membrane at the parapet (Photographs 3 and 4).
Figure 7: Roof Membrane Temperatures—Ottawa, Canada, summer day. Courtesy of Max Baker and the National Research Council of Canada.(1)
Figure 8: Roof Membrane Temperatures—Ottawa, Canada, winter day. Courtesy of Max Baker and the National Research Council of Canada.(1)
Figure 9: Transferring the Thermal Stress—Easy to do when the membrane is adhered directly to the structure. Not so easy when you have insulation, or worse, multiple layers of insulation between the membrane and the structure.
Transferring loads in multilayer compact roofs is quite controversial. There are lots of opinions, and I want to point out right from the start that only I am right. Let’s start out in the field of the roof. This is how a compact roof would be constructed if I was in charge (Figure 11). There should be a continuous fully adhered air control layer supported by gypsum sheathing on the top of a metal deck.3 The gypsum sheathing is screwed to the metal deck. There should be a whole bunch of rigid thermal insulation on the top of this air control layer—in two layers at least with the joints off-set horizontally and vertically.4 This insulation should be screwed down to the metal deck. Then on top of the rigid thermal insulation there should be a coverboard. This coverboard is also screwed down to the metal deck. Finally, a roof membrane is fully adhered to the coverboard.
Figure 11: Perfect Compact Roof—The roof I would build if I were in charge. A continuous fully adhered air control layer supported by gypsum sheathing on the top of a metal deck. The gypsum sheathing is screwed to the metal deck. Rigid thermal insulation on the top of this air control layer in two layers at least with the joints off-set horizontally and vertically. This insulation should be screwed down to the metal deck. Then on top of the rigid thermal insulation there should be a coverboard. This coverboard is also screwed down to the metal deck. Finally, a roof membrane is fully adhered to the coverboard.
The function of the coverboard is two-fold. First, it is a hygric buffer that reduces roof membrane blistering. A discussion of this has to wait for some other time. Second, and most important to our story, is that its function is to transfer the stresses of the primary roof membrane to the metal deck. Stresses from the roof membrane are transferred to the coverboard, and the coverboard does the heavy lifting and handles these stresses finally getting them down to the metal deck.
Next we have to deal with the potential for concentrated roof stresses at parapets. Figure 12a shows how the “old timers” did it—wood blocking and a cant anchored to the structural deck. Figure 12b shows how the “new pups” do it—a large backer rod supporting a bunch of extra membrane that lets things move when they have to move. As much as it pains this “old timer” to say this, with the newer more dimensionally stable membranes the “new pups” have it more right.
Figure 12a: Steel Stud Parapet “Old Timer.”—Wood blocking and a cant anchored to the structural deck restrain membrane shrinkage at parapet. Notice the continuity of the control layers.
Figure 12b: Steel Stud Parapet “New Pups.”— Large backer rod supporting a bunch of extra membrane that lets things move when they have to move. The “Zen” approach to membrane movement. Use a more dimensionally stable membrane and then let things move when they have to. Again, notice the continuity of the control layers.
Now on to the continuity stuff. All we have to do is apply the Baker Principles (Figure 5) to typical roofs and walls. To that end, with the help of my colleagues at the Skunk Works at Building Science Corporation, I have drawn up a few of the more common parapet constructions following the “Baker Principles”: the already discussed Steel Stud Parapet (Figure 12b), the Masonry Parapet (Figure 13), the Balloon Framed Steel Stud Parapet (Figure 14) and, finally, the Cantilevered Mini Parapet (Figure 15).
Figure 13: The Masonry Parapet—The thing to note here is that the concrete deck is the air control layer so an additional one is not necessary. However, joints in the concrete deck need to be addressed for air control layer continuity.
Figure 14: The Balloon Framed Steel Stud Parapet— This is the ugliest parapet to get right. Notice the use of spray polyurethane foam, the high density stuff, to provide air control layer continuity across the balloon framed exterior steel stud wall. The spray foam is supported by horizontal bridging or metal blocking. This is a tricky thing to execute and, as such, we design into the upper parapet assembly a pathway for drying viadiffusion to provide some performance redundancy.
Figure 15: The Cantilevered Mini Parapet—Notice that air control layer continuity is achieved by wrapping the membrane over the building corner and then constructing the cantilevered portion of the parapet over the top of this air seal.
All of the “good” series of parapet details presented follow the “Baker Principles” and a little bit of other stuff (Figure 12a, Figure 12b, Figure 13, Figure 14, and Figure 15):
- Water control layer continuity: membranes continuous under the parapet flashing;
- Air control layer continuity: an air control layer in the roof assembly is connected to the air control layer in the wall assembly;
- Vapor control layer continuity: a vapor control layer in the roof assembly is con¬nected to the vapor control layer in the wall assembly;
- Thermal control layer continuity: the thermal control layer of the roof assembly is connected to an effective thermal control layer in the wall assembly. The thermal control layer in the wall assembly is exterior to the structure—just as in the roof assembly.
- The roof membrane is fully adhered to a coverboard that is mechanically attached to the structural deck in the field of the roof and an allowance for membrane movement is provided at the perimeter of the roof assembly.
The perimeter of the roof assembly insulation is wrapped to prevent interstitial airflow from the parapet into the multilayered rigid insulation of the field of the roof.
The cure for “parapetitus” is continuity of the control layers and letting things move when they have to move. Max Baker and Stonewall Jackson would be proud.
PARAPET..... SEASON 1
A parapet is a barrier which is an extension of the wall at the edge of a roof, terrace, balcony, walkway or other structure. The word comes ultimately from the Italian parapetto (parare "to cover/defend" and petto "breast"). The German equivalentBrustwehr has the same meaning. Where extending above a roof, a parapet may simply be the portion of an exterior wall that continues above the line of the roof surface, or may be a continuation of a vertical feature beneath the roof such as afire wall or party wall.[1] Parapets were originally used to defend buildings from military attack, but today they are primarily used as guard rails and to prevent the spread of fires.
Parapet types[edit]
Parapets may be plain, embattled, perforated or panelled, which are not mutually exclusive terms.
- Plain parapets are upward extensions of the wall, sometimes with a coping at the top and corbel below.
- Embattled parapets may be panelled, but are pierced, if not purely as stylistic device, for the discharge of defensive projectiles.
- Perforated parapets are pierced in various designs such as circles, trefoils, or quatrefoils.
- Panelled parapets are ornamented by a series of panels, either oblong or square, and more or less enriched, but not perforated. These are common in the Decorated and Perpendicular periods.
Historic parapet walls[edit]
The Mosaic law prescribed parapets for newly constructed houses as a safety measure (Deuteronomy 22:8).
The Mirror Wall at Sigiriya, Sri Lanka built between 477 and 495 AD is one of the few surviving protective parapet walls from antiquity. Built onto the side of Sigiriya Rock it ran for a distance of approximately 250 meters and provided protection from inclement weather. Only about one hundred meters of this wall exists today, but brick debris and grooves on the rock face along the western side of the rock clearly show where the rest of this wall once stood.[2]
Parapet roofs[edit]
Parapets surrounding roofs are common in London. This dates from the Building Act of 1707 which banned projecting wooden eaves in the cities of Westminster and London as a fire risk.[citation needed] Instead an 18-inch brick parapet was required, with the roof set behind. This was continued in many Georgian houses, as it gave the appearance of a flat roof which accorded with the desire for classical proportions.
Fire wall parapets[edit]
Many firewalls are required to have a parapet, a portion of the wall extending above the roof. The parapet is required to be as fire resistant as the lower wall, and extend a distance prescribed by building code.
Bridge parapets[edit]
Parapets on bridges and other highway structures (such as retaining walls) prevent users from falling off where there is a drop.[3] They may also be meant to restrict views, to prevent rubbish passing below, and to act as noise barriers.
Bridge parapets may be made from any material, but structural steel, aluminium, timber and reinforced concrete are common. They may be of solid or framed construction.[3]
In European standards, parapets are defined as a sub-category of "vehicle restraint systems" or "pedestrian restraint systems".
Parapets in fortification[edit]
In terms of fortification, a parapet (or breastwork) is a wall of stone, wood or earth on the outer edge of a defensive wall ortrench, which shelters the defenders.[4][5] In medieval castles, they were often crenellated. In later artillery forts, parapets tend to be higher and thicker. They could be provided with embrasures for the fort's guns to fire through, and a banquette or fire-step so that defending infantry could shoot over the top. The top of the parapet often slopes towards the enemy to enable the defenders to shoot downwards; this incline is called the superior talus.[6]
Sunday, 3 July 2016
Aluminium casement windows....
Check out new aluminium casement windows,from the stables of phoenix concepts....
They comes in different colors and thickness to suits your preferred choice and taste...
We take into consideration your wallet and taste,which is our most priority....
Our state of the art aluminium longspan roofing sheet is one of a kind,,,it goes with any weather..be it step tiles or metra type..
It also comes with variety of colors and thickness,,,just exactly what you need for that outstanding building of yours....
We deliver in any part of Nigeria....Limited days of installation and fitting....percentage cut on installation cost within Lagos,Ogun and Oyo States...
Contact us;call or watsapp +234-7035803556
+234-9057144711
Email; dejiayorinde@gmail.com
dejiayorinde@yahoo.com
Blog; dejiayorinde.blogspot.com
Subscribe to:
Posts (Atom)